Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 20(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354993

RESUMO

Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold's surface after cell cultures. All the results were correlated with the scaffolds' compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.


Assuntos
Alginatos , Gelatina , Animais , Gelatina/farmacologia , Alginatos/farmacologia , Tinta , Alicerces Teciduais , Engenharia Tecidual/métodos , Impressão Tridimensional , Regeneração Óssea
2.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372065

RESUMO

The aim of our work is to prepare mucoadhesive particles with biopolymers and 5-Aminosalicylic acid (5ASA) using the ionotropic gelation technique to ensure a controlled drug release at the colon level with potential applications in the treatment of intestinal bowel disease (IBD). The preparation of particles through the crosslinking of Chitosan (CS) with sodium tripolyphosphate (TPP) using different mass ratios and the influence of the k-Carrageenan (kCG) layer were studied. UV-VIS spectrometry was employed to assess encapsulation efficiency and drug release profile of 5ASA. The particles were investigated using FT-IR spectrometry for chemical characterization and the DLS results highlighted a monodisperse particle size distribution. The morphology of the polymeric beads was investigated using micro-computer tomography (µCT) and Scanning Electron Microscopy (SEM). Particles based on Chitosan and k-Carrageenan were able to incorporate and preserve 5ASA in an acidic and alkaline medium. The 5ASA loaded polymeric particles obtained after immersion for 1 h in kCG solution exhibited the lowest release rate in pH = 1.2. Biocompatibility studies performed on all of the particles displayed a good viability for the CCD 841 CoN cells and low cytotoxicity. All of the results have shown that these new biomaterials could be a versatile platform of targeted carriers with potential applications in inflammatory bowel disease treatment.

3.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659925

RESUMO

Inflammatory bowel diseases (IBD) are defined by the continuous inflammation of the gastrointestinal tract. During inflammation, the number of pathogens in the intestinal epithelium increases, leading to inflammasome assembly. Inflammasome activation is meant to protect the intestinal epithelial barrier from further damage by maintaining homeostasis. Although its purpose is to protect the cells, excessive nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome assembly is responsible for the synthesis of a high number of pro-inflammatory cytokines. The activation of two crucial pathways, autophagy process, and unfolded protein response, is initiated for restoring homeostasis. Aberrant expression of miRNAs and lncRNAs also interfere with the pathogenic mechanisms of IBD, as these non-coding transcripts play key roles in regulation of biological processes, such as inflammation and immunity. This review thoroughly describes the cellular and molecular mechanism that trigger and perpetuate inflammation in ulcerative colitis (UC) patients.


Assuntos
Colite Ulcerativa/metabolismo , Animais , Autofagia , Colite Ulcerativa/genética , Estresse do Retículo Endoplasmático , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
4.
Materials (Basel) ; 12(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569582

RESUMO

The current study focuses on the application of cytotoxicity tests upon one membrane matrix based on electrospun polyimide fibers, appealing for biomedical application, such as scaffolds for cell growth, patches or meshes for wound healing, etc. Assays were performed in order to determine the viability and proliferation of L929 murine fibroblasts after they were kept in direct contact with the studied electrospun polyimide fibers. Increased cell viability and proliferation were detected for cells seeded on electrospun polyimide fibers membrane, in comparison with the control system, either after two or six days of evaluation. The number of live cells was higher on the studied material compared to the control, after two and six days of cell seeding. The tendency of the cells to proliferate on the electrospun polyimide fibers was revealed by confocal microscopy. The morphological stability of electrospun polyimide membrane was evaluated by SEM observation, after immersion of the samples in phosphate buffer saline solution (PBS, 7.4 at 37 °C) at various time intervals. Additionally, the easy production of electrospun polyimide fibers can facilitate the development of these types of matrices into specific biomedical applications in the future.

5.
Materials (Basel) ; 12(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581444

RESUMO

Composite hydrogels based on pullulan (HP) and poly(vinyl alcohol) (PVA) were both prepared by simple chemical crosslinking with sodium trimethaphosphate (STMP) or by dual crosslinking (simultaneously chemical crosslinking with STMP and physical crosslinking by freeze-thaw technique). The resulting hydrogels and cryogels were designed for tissue engineering applications. PVA, with two different molecular weights (47,000 and 125,000 g/mol; PVA47 and PVA125, respectively), as well as different P/PVA weight ratios were tested. The physico-chemical characterization of the hydrogels was performed by FTIR spectroscopy and scanning electron microscopy (SEM). The swelling kinetics, dissolution behavior, and degradation profiles in simulated physiological conditions (phosphate buffer at pH 7.4) were investigated. Pullulan concentration and the crosslinking method had significant effects on the pore size, swelling ratio, and degradation profiles. Cryogels exhibit lower swelling capacities than the conventional hydrogels but have better stability against hydrolitic degradation. Biocompatibility of the hydrogels was also investigated by both MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactaten dehydrogenase) assay. The MTT and LDH assays proved that dual crosslinked HP/PVA125 (75:25, w/w) scaffolds are more biocompatible and promote to a greater extent the adhesion and proliferation of L929 murine fibroblast cells than chemically crosslinked HP/PVA47 (50/50, w/w) scaffolds. Moreover, the HP/PVA125 cryogel had the best ability for the adipogenic differentiation of cells. The overall results demonstrated that the HP/PVA composite hydrogels or cryogels are suitable biomaterials for tissue engineering applications.

6.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398874

RESUMO

Carbon-based nanomaterials, such as graphene oxide (GO) or carbon nanotubes (CNTs) are currently used in various medical applications due to their positive influence on biocompatibility, adhesion, proliferation, and differentiation, as well as their contribution to modulating cell behavior in response to nanomaterial substrates. In this context, in this study, novel flexible membranes based on cellulose acetate (CA) enriched with CNT and GO in different percentages were tested for their versatility to be used as substrates for soft or hard tissue engineering (TE), namely, for their ability to support human adipose-derived stem cells (hASCs) adhesion during adipogenic or osteogenic differentiation. For this purpose, differentiation markers were assessed both at gene and protein levels, while histological staining was performed to show the evolution of the processes in response to CA-CNT-GO substrates. Micro-CT analysis indicated porous morphologies with open and interconnected voids. A slightly lower total porosity was obtained for the samples filled with the highest amount of GO and CNTs, but thicker walls, larger and more uniform pores were obtained, providing beneficial effects on cell behavior and increased mechanical stability. The addition of 1 wt% GO and CNT to the biocomposites enhanced hASCs adhesion and cytoskeleton formation. The evolution of both adipogenic and osteogenic differentiation processes was found to be augmented proportionally to the GO-CNT concentration. In conclusion, CA-CNT-GO biomaterials displayed good properties and versatility as platforms for cell differentiation with potential as future implantable materials in TE applications.


Assuntos
Materiais Biocompatíveis/química , Grafite/química , Nanotubos de Carbono/química , Engenharia Tecidual , Alicerces Teciduais/química , Biomarcadores , Adesão Celular , Técnicas de Cultura de Células , Diferenciação Celular , Sobrevivência Celular , Fenômenos Químicos , Humanos , Teste de Materiais , Osteogênese , Porosidade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...